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SUMMARY

Within the limitations of linearized potential theory for super—
gonic flow, solutions have been obtained for the damping in roll of
trisngular, trapezoidal, rectangular, and two swept—back plan forms.

The results indicate that as the aspect ratio is increased the
limiting value of the damping in roll for trapezoidal (with a finite,
fixed reke angle) and rectangular plan forms is equal to the value
for two—dimensional flow which is twice the limiting value for trian—
gular plen forms. For the swept—back plan forms having the Mach
cone and leading edge coincident or very nearly coincident, the
damping in roll even exceeded the value for two—dimerfsional flow.

In addition, ah investigation of the effect of reversal of the
plan—form position relative to the stream direction was made for
the majority of the plan forms considered and the results show
that this reversal had no effect on the value of the damping—in—
roll stability derivative. ' '

INTRODUCTION

There are s number of methods avallable for. determining
supersonic—flow load distributions on lifting surfaces by means of
linearized potential theory. Application of any of these methods
varies in detail and no individual method can be considered as being
best sulted £dr use in obtaining solutlons for arbitrary Mach—cone
plan—~form conflgurations.

The relatively simple problem of determining the Induced flow
Pield and the surface shape to support an arbitrarily prescribed
load distribution alweys can be solved using doublet distributions
and a surface integration. This procedure provides an explicit
expression of the doublet sheet potential. (For a detalled descrip—
tion see reference l.) On the other hand, if the loadling over a
wing is to be determined from a knowledge of the downwash distri-
bution required to maeke the streamlines conform to the shape of
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the lifting surface, the doublet distribution and surface integra—
tion method again can be applied directly, provided the wing has
gso—called supersonic leadlng edges, tralling edges, and tips.* When
subsonic edges or tips are comsidered, however, the mathematical
development involves the solution of an integral equation in order
to get results comparable to those obtained by the relatlively simple
surface integration used for wings wlth supersonic edges. The
solution of an integral equation is generally a rather long and
tedious process and can be clrcumvented for certain plan forms with
subsonic leading edges or tipe by a method presented in reference 2.

In this Investigation to determine the linearlzed—potential—
theory load distribution due to roll,only the surface integral
methods of references 1 and 2 have been used. Other methods that
have been applied successfully to obtain angle-of-ettack loadings,
such as the conical flow and the doublet—line methods, are also
applicable,

The plan forms considered in thils investigation are the follow—
ing: (1) triangular with subsonic leading edges and with supersonic
leading edges; (2) trapezoidal with all possible combinations of
rsked in, raked out, subsonic or supersonic tips (fig. 1); (3)
rectangular; and (hs two swept-back plan forms developed from the
triangular wings (fig. 2). Moreover, all but the swept—back plan
forms and the trianguler plan form with subsonic leading edges were
enalyzed with the stream direction reversed so that the leading edges
were Interchanged with the trailing edges.

The load distributions due to rolling obtalned for the wings
investigated were subsequently Integreted to determine the rolling
moment and the damping—in—-roll stability derivatives. All results
have bheen presented in stabllity-derivative form.

SYMBOLS AND COEFFICIENTS

X,¥,2 Cartesian coordinates
u perturbation veloclity along the positive X—axis
W perturbation velocity parallel to Z-axis (positive downward)

1A supersonic edge is an edge for which the angle of inclination
from the plane of symmetry is grester than the Mach cone angle.
The inverse of this relationship defines a subsonic edge.
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v free—stream velocity
span of wing measured normal fo plane of symmetry
or root chord of wing

1 over-all length of swept—-back wing (8ee fig. 2)
8 area of wing
-ba
A agpect ratlo T
o} density in the free stream
q free-streem dynamic pressure (¥oV2)
AP Pressure differentlal across wing surface, positive upward
L rolling moment about X-exis
L

C, rolling-mament coefficient (ﬁ)
P rate of roll, radisns per secomnd
c demping—in—roll stabllity derivative (—-i}—->
M free~atream Mach number

21
K Mach angle (a.ro tan %)
o] tip reke angle measured from line parallel to plane of

symmetry in plane of wing
m tangent of &

tan B
tan w

E complete eliptic integral of the second kind with

modulus 41—62
X complete elliptic integral of the filrst kind with

modulus 4/1-62 :

) perturbation velocity potential



NACA TN No. 1548

METHOD

The thin-elrfoll—theory boundary condition for & rolling wing
is a linear spanwlse varlation of angle of attack which correspemds
to a linear spanwise distribution of the vertical induced velocity w.
The problem, therefore, is to find the load distribution that will
satisfy this condition within the wing boundaries and conform in all
other respects to a proper solution of the linearized differential
equation for supersonic flow. A detailed development and discussion
of the surface integral method for obtaining the load distribution
for a rolling wing can be found in reference 1. The presentation of
the method in this report is merely an outline of the operations
involved 1n obtalning the load distribution from the known boundary

conditicns.

The loading at any point 1s proportional to the perturbation
velocity u parallel to the longitudinal axis of the wing (the
X-exis in figs. 1 and 2). The following simple relationships from
linearized potential theory

o 3 [z

u=$=-a—cone w dz (l)
2
ik (2)

can be used to obtaln u and subsequently the load distribution in
terms of % once the generé.l expression for the vertical Induced

velocity w required in equation (1) is kmown.

To convert the load distribution into rolling moment about the
X-axis the following Integration must be performed:

=[] ving Fyoyax
plan form
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The stebility derivative coefficlent C‘zp 1s then

0. = oy _ _2VL
ECO

The genersl expression for w must be known In the region
directly above the wing extending from the wing to the Mach cone
envelope., The procedures for obtaining thls expression are divided
Into the two following ecategories for discussion.

Supersonic leading Edges and Tips

An spplication of Green's theorem, discussed in reference 1,
provides the means for determining a goneral expression for w Iif
w 18 specified in the plemne of the wing over the area bounded by
the envelope of the Mach forecones stemming from the tralling
edgos. The means used emounts to an Integration over a doublst
sheet for which the strength is proportional to the specified values
of w on the ¥=Y plane. For the supersonic—edged plan forms, there—
fore, the loading solution can be cobtalned reasdily, since w 1is
equal to zero in the bounded area of the X¥—Y plane except on the
wing lteelf where w 1s equal to the prescribed boundary—condition
value.

Subsonic Ieading Edges or Tips

If the plan form hes & subsonic leading edge or tips, the air
can be disturbed in the region between the foremost Mach cone and
the wing surface. In this region, therefore, the specification of
w on the X-Y plane requires in general that an integral equation
must be solved to «obtain the genmeral expression for w. Reference 2,
however, provides an aslternative procedure for certain types of sub-
sonic leading-edge or tip plen forms whereby the solution of an
integral equation may be avoided. The solutions for these plan forms
then are obtalned by a process of integration similar to the
procedure used For plan forms with supersonic tips and leadlng edges.

DISCUSSION OF RESULTIS

The stability—derivative results are divided into the trian—
gular plan form, the trapezoidal and rectengular plan form, and the
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swept—back plen—form categories for discussion. Xxpressions for the
stabllity-derivative coefficlents are given., Curves showing the
variation of these coefficlents with aspect ratlo are presented in
figures 3, 4, and 5. Expressions for the loading function A'P/q
are glven in Appendix A.

Triangular Plan Forms

The expression for C’zp for the triangular plan form® with
supersonic leading edges 1l

-

BC-LP = —'3‘

and for the triangular wing with subsonic leading edges it 1s

BCzP

I R
W& - )

where E 1s the complete elliptic integral of the second kind with
modulus ,1-82, K i1s the complete elliptic integral of the first

kind with modulus ./1-62, and 8 is a paremeter that Indicates the
relative posltions of the Mach cone and leedlng edge. For the sub—
gonlc leading-edge plan forms the value of 6 18 less than 1 and
the leading edge is swept behind the Mach come. The variation of
BC'LP with the aspect ratio parameter PA 1s presented in figure 3
for both types of trlanguler plan forms.

Trapezoldal and Rectengular Plan Forms

There are two general types of trapezoldal plan forms, defined
by having the tip either raked in or raked out from the leading
edge. The tlp In elther case may be classified as subsonic or super—
sonlc depending on whether the Mach-cone angle 1s greater or less
than the rske angle. Thus there are four basic Mach—cone plan—form

2Tx-:i.a.ngu_'!.a,r plan forms with the polnt forward wlll be referred to
as "triangular plsn forms" in contrast to the term "inverted
triangular plan forms" which will be used in reference to base
forwerd trlangles,
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configurations. For three of these conflgurations the possibility
of the overlaepping of the Mach cones from the tips provides a '
seocondary configuration for which it is possible to predict the
loading distribution and the damping due to roll. All the trape—
zoldal plan forms ooneidered are shown in flgure 1.

The expression for BC
supersonic tips (6>1)

Forp "‘%( -2)

was found to apply regardless of whether the tip was reked in, as

on plan form a, or raked out, as on plan form b. Since for a
given € and = given span the plan forms a and b are effectively
the same plan form with the stream directlon reversed, it is evident
that Clp 1s independent of the direction of the stream, provided
the stream remains parallel to the plane of symmetry of the plan
form. The same conclusion applies to the subsonic~tipped trapezoidal
and rectangular plan forms (6<1) and the expression for BCi, for
this type 1s

1p for the trapezoidal plan forms width

2

BCzp=:!i%‘-E§[8—-1%%1(1+9)+g1°§2(1+h9+392)

.cs 2 3
+ % (1 - 30 - 08 59)]

This property of reversibility eppears to be rather remarkable
in view of the fact that the load distribution on & given plan form
is changed markedly by reversing the gtream directiom, This result
also is a direct analogue to von Karmsn's independence theorem
(reference 3) for drag and, although the drag theorem was developed
analytically to apply to all plan forms, the independence of the
1ift and roll characteristics as yet merely has been Indicated by
calculation on & limited mumber of plen forms.

It 1s obvious that the twreperoldsl plan form csn be reduced in
span till either a trilangular or an inverted triangular plan form
1s obtained. Thus it was possible to check on the reversibility
property of the supersonic—leading-edge triangles quite readily.

It was not possible in the present investigation, however, to reduce
the subsonlc—tipped trapezolds to triangles corresponding to
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inverted trlangular wings in order to obtaln a check on the inde—
pendence theorem for these plan forms. As PBA becomes less than
(1L + 6)2 +he Mach cone from one tip 1s reflected off the other tip
and the load dlstribution behind these reflected Mach lines is not
readlly determined. From figure 3 1t 1s apparent that, for values
of PA 1less than (1 + 6)2, the variation of BCip with BA

must reduce 1In slope as the trapezoid reduces to a triangle
(A = 46) 1mn order to yleld the value of BCip corresponding %o

the value of BCzP for the triangular plan form.

It can be seen In figure 3 that as the aspect ratio Increases
the values of BC'LP for the trapezoldel and rectangular plen forms
approach the value for two—dimensional flow — -3-; whereas the
1
3
parameter BA becomes equal to or greater than 4. By letting the
tangent of the rake angle approach Infinity as the span approaches
infinity, the supersonlc~tipped trapezoidsl plen forms can be made
to approach the configuration of an inverted trlangulsr plan form.
8ince for a triangular plan form

triangulear plan forme reach a value of — when the aspect ratio

A=ln

the limiting value of BC'Lp for this case becomes (using the expres—
sion for the supersonic—tipped trapezoidal plan forms)

2 20
BCip = 3<1‘FK

3 Bl

and thus checks with the value for the trisngular plan form with
supersonic edges.

Swept~Back Plan Forms

The two swept—~back plen forms shown in figure 2 are easlly
developed from the trisngulsr wings of supersonic and subsonic lead—
ing edges by cutting out a small triangulsar. area from the rear of the
triangular plan forms, Other awept—back plan—form configurations
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are also amenable to calculation but only the results for the two
plan forms selected are included irn this report for purposes of
comparison. The expression for the damping in roll of the swept—back
plan form with subsonic leading edges is

_ B(ILi-Lp) &V B(Li-L2)2V
BCy, =

D gSb p—b B %—Il (ﬁf— + 20p) — 12 —cp2 ]qpbz

where IL; 1s the rolling moment for the triangular wing as a whole
and Lz 1s the rolling moment of the small triangles cut out to
provide a swept—back plan form. The expressions for L, and Lz
are given In Appendix B.

For the swept—back plan form with supersonic leading edges the
damping—-in—roll coefficlent 1s

_ B(LeTa) 20 _ B(LoLa)2¥

BC1
P aSb PP m I 1 (% + 20r) —1® '—Cr2 :I QP'DZ

where Lz is the rolling moment for the triangular wing as a whole
and Is 1is the rolling moment of the small triangle cut out to
provide a swept-back plan form. The expressions for Lg and L,
are glven in Appendix B.

From figure 5 it can be seen that both of these swept~back
plan forms provided more damping in roll than their related trian—
gular plan forms of the same span and Mach—cone leading-edge config—
uration. This result was anticipated, since the load distributions
for the triangular plan forms in roll reveal that the magnitude of
the load increases as the leading edges are approached. At values of
@ in the immediate vicinity of 1, the swept-back plan forms provide
greater damping in roll than the trapezoldal or rectangular plan forms
for comparable values of PA. Moreover, even the value of BC],P

for two—dimensional flow — % is exceeded in magnlitude at PBA's of
10 or higher by the swept-back plan forms of the type shown on which

the Mach cone and leading edge ars very nearly coincident (6 very
nearly equal to 1).
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CONCLUDING REMARES

The results of this investigation based on linearized potential
theory indicate that for values of BA greater than 4 the trapezoidal
and rectangular plan forms provide values of —BCZP greater than

the limiting value 3 for the triangular plan forms. The limiting

value of ~fCi, for the rectengular and trapezoidal (with a finite,

fixed rake angle) plan forms is g which corresponds to the value

for a constant-chord plan form of-Infinite span. The value of
% for —BCIP is also exceeded by some of the swept—back plan forms,

The swept~back plan forms investlgated, moreover, showed that for
configurations on which the Mach cone and the leading edge are very
nearly coincident the value of —ﬁCzp for two—dimensional flow

% is exceeded.

All but the swept-back plan forms and the triangular plan form
with subsonic leading edges were Investigated with the leading edges
and trailing edges reversed relative to the stream direction. For
a glven plan form at a glven Mach number it was found that this:
reversal, which changed completely the distrlbution of the load,
had no effect on the valus of BCzP.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Fileld, Calif.
APPENDIX A

The expressions for the load distribution over the triangular plan
forms are as followa:

@ >1 (Supersonic leading edges) Region within the Mach cone

2.t (a0, Lo [ S |

8 (mx~y)

- [nlommn | g 2w [, morr |
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Reglon between Mach cone and leading ed.g_e

AP _ 4pm(6Zy-mx)
g V(6%1)
6<1 (Subsonic leading edges)
AP bp mayx

—— 2 2 2 -
 wheeve[2gEE - x|

The expressions for the load distributions for the trapezoidal
plan forms shown in figure 1 and for the rectangular plan form are
as follows:

6>1
Plen form'a, PA>L

AP _ hpy
q BV

Plan form b, BA>4(8+1)3/(842)

Reglon 1
AP _ Lpy

q BV

Regiom 2

g _ .1_1-2 {:m(GZ y-mx— bg + mcr} J I [92(3-__ E_ + mcr)—-mx :{
n{92-1)%/2 - B(m—y + g— ‘Gr)

q v

b

m{ @8y-mx— = + mc my By—b-+mc m

*( 5 r)__ s!_l[( 5 r)}+y
2(e2-1)3/2 7o mx 26

. mﬁ%&ea(y—i+ mcr)a }
x 62(623-1)
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Plen form c, 4<BA<k(6+1)2/(6+2)

Region 1 &F game as for region 1 on plan form b

Q
Region 2 QE same as for region 2 on plan form b
Region 3 %E same as for region 3 on plan form b
Region 4

-

o (& & bp[ [m(-62y-mx— B +mo )] —1 [62(y— B +mo )—mx:}
' _\E—>2—<€1> 1" v I_ x(6%-1)8/2 L. | sin™ [ e %r—cr)

m(—62y-mx— % + mcy) L A [G(—y— % +0Cyp) —} _my
2(62—1 7o mx J 26

. m/mzxz—ea(—y— % +mC )2 }
n62(6%-1)

6 <1

Plan form d, BA>L/(2-6)

Region 1

b

“IR
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i Region 2

=_£ '_Z a1 2B(y—B—)+x+6x
v l_ﬂ x(1-6)

“1%

__' 2 /—(By—£8 +x)(By-pR +GX)]
7B(1-6)

Flan form e, (1+8)2 <BA <ki/(2-8)

Region 1 &Q same as for region 1 on plan form 4.

Region 2 %2 same as for region 2 on plan form d.

Region 3

AP AP ) 1 — | 2B(=y— B )+x+6x
22L(8), - (&), + 2 T o [P Bheen]

2,/(By+ﬁ§ -x)(6x—By-pR) }
x R(1-6)

13
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Plan form £, BA>k4(6+1)%/(8+2)

Region 1

AP _ kpy
q BV

Reglon 2

AP o[y cos_l_[e(ay-eg +ecr)+x—ex]
x x(1+8)

K ,/(x+By—B£ -:rech(‘i i é;x)—By+EE —6cr)

f662(ﬁy+x )-2e(ay+x+uec,-uj_] /(7:+By—ag +60y.)
(

3np(1+6)2 Gx—By+B% —8cy)

Plan form g, (1+0)° <BA <4(1+6)%/(6+2)

Region 1 QP- game as for region 1 on plan form f.

Region 2 ez same as for reglon 2 on plan form f.
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Region 3

AP A_£> ( {g_ - [2(-{3y—ﬁg +6,.)+x~0x
T - \q g/, B = x(1+8)

, 2 {/(x-By-BR +9c,.) (6x+By+BR —6ey)

7R(1+6)
. [662(By—x)+29(x—6y+’+ecr—l+[3£)] —By_sg +6c., }
3np(1+6)2 ox+By+88 —oc,,

= 0 (rectangular) BA >1

%B same as for trapezoldal plan form e with 6 = O.

APPENDIX B

+

The expressions for the rolling moments Lj, Lo, La, and ILg
for the swept~back plan forms are:

L = —qu T

=Y \1—62 T 1%z K)

]

15



16

Lo = —8pqm® {[cr462(h62+1)]
- ) e

_ A122{1—cp)Z

— cp-1(1-62) -1 ]
[sin —r—_-————CrB sin 6 SLpE(1-62) S

[31 8512041 CptCn2-02(913-131 20 10+ T2 n2+10c,3)

+ 6%( 9Z°—lllzcr+67.cr2-60r3)-—36°(Zs—zecr):]

NACA TN No. 1548
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_ —2pam* o f [H36%2) (6%2) - 1, (36%2)(624)
Ya = WW(e1)372 | °r <[1219’-1)’ R T e S -y 7

. [(92+l)(?.—cr)3 , (cp)2 . (e?-e):l a1t 82(2—cp)+?
30, 2cp2 2l 6(21~cy)

. [_ (021)(1—r)®  (1—or)®  (6%-2) (36%+2) 5:] g2 820—or)-1

3cpS 2c, 2 2% 12(e2-1) 6cy

. J12=62(1—5)> (_ (1—cp)3/65—L , (er)(36242) | 392+2)(e2-1;)]
9c,2 36c, /651 36(62-1)37%

Sr

" 62(1—<p)® (1—cp)2 (262-3)] —1 63(1—cp)+l
+ 1 <[- 3n® 212 T 6 8in o)

. [e“’( 1=r)®  (1—cp)® g292-3)] sin=t 62(1—cp)—i

e 212 6cy

. n(g2-1)%/2 _ (=) V621 12-6%(1— )2
Ne

36

_ [2(92—1)3/2] cog™L G(Z;cr)> , (i—orp)txe®
36 3
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